- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Luna, Jose (2)
-
Abbasi, Rasha (1)
-
Abeysekara, Anushka Udara (1)
-
Ackermann, Markus (1)
-
Adams, Jenni (1)
-
Aguilar, Juanan (1)
-
Ahlers, M. (1)
-
Ahrens, Maryon (1)
-
Albert, Andrea (1)
-
Alfaro, Ruben (1)
-
Alispach, Cyril Martin (1)
-
Alvarez, César (1)
-
Alves Junior, Antonio Augusto (1)
-
Amin, Najia Moureen (1)
-
An, Rui (1)
-
Andeen, Karen (1)
-
Anderson, Tyler (1)
-
Angeles Camacho, José Roberto (1)
-
Anton, Gisela (1)
-
Arguelles, Carlos (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Luna, Jose; Jaynes, Jessica; Xu, Hongquan; Wong, Weng Kee (, Statistics in Medicine)Abstract The aim of this article is to provide an overview of the orthogonal array composite design (OACD) methodology, illustrate the various advantages, and provide a real‐world application. An OACD combines a two‐level factorial design with a three‐level orthogonal array and it can be used as an alternative to existing composite designs for building response surface models. We compare the ‐efficiencies of OACDs relative to the commonly used central composite design (CCD) when there are a few missing observations and demonstrate that OACDs are more robust to missing observations for two scenarios. The first scenario assumes one missing observation either from one factorial point or one additional point. The second scenario assumes two missing observations either from two factorial points or from two additional points, or from one factorial point and one additional point. Furthermore, we compare OACDs and CCDs in terms of ‐optimality for precise predictions. Lastly, a real‐world application of an OACD for a tuberculosis drug combination study is provided.more » « less
-
Ayala, Hugo; Abeysekara, Anushka Udara; Albert, Andrea; Alfaro, Ruben; Alvarez, César; Álvarez Romero, Juan de; Angeles Camacho, José Roberto; Arteaga Velazquez, Juan Carlos; Kollamparambil, Arun Babu; Avila Rojas, Daniel Omar; et al (, ICRC2021)
An official website of the United States government

Full Text Available